Dose to craniofacial region through portal imaging of pediatric brain tumors
نویسندگان
چکیده
The purpose of this study was to determine dose to the planning target volume (PTV) and organs at risk (OARs) from portal imaging (PI) of the craniofacial region in pediatric brain tumor patients treated with intensity-modulated radiation therapy (IMRT). Twenty pediatric brain tumor patients were retrospectively studied. Each received portal imaging of treatment fields and orthogonal setup fields in the craniofacial region. The number of PI and monitor units used for PI were documented for each patient. Dose distributions and dose-volume histograms were generated to quantify the maximum, minimum, and mean dose to the PTV, and the mean dose to OARs through PI acquisition. The doses resulting from PI are reported as percentage of prescribed dose. The average maximum, minimum, and mean doses to PTV from PI were 2.9 ± 0.7%, 2.2 ± 1.0%, and 2.5 ± 0.7%, respectively. The mean dose to the OARs from PI were brainstem 2.8 ± 1.1%, optic nerves/chiasm 2.6 ± 0.9%, cochlea 2.6 ± 0.9%, hypothalamus/pituitary 2.4 ± 0.6%, temporal lobes 2.3 ± 0.6%, thyroid 1.6 ± 0.8%, and eyes 2.6 ± 0.9%. The mean number of portal images and the mean number of PI monitor units per patient were 58.8 and 173.3, respectively. The dose from PI while treating pediatric brain tumors using IMRT is significant (2%-3% of the prescribed dose). This may result in exceeding the tolerance limit of many critical structures and lead to unwanted late complications and secondary malignancies. Dose contributions from PI should be considered in the final documented dose. Attempts must be made in PI practices to lower the imaging dose when feasible.
منابع مشابه
Reducing excess radiation from portal imaging of pediatric brain tumors
Previously we have shown that our routine portal imaging (PI) of the craniofacial region in pediatric brain tumor patients contributed an additional 2%-3% of the prescribed dose and up to 200 cGy to the planning target volume (PTV) and nearby organs at risk (OARs). The purpose of this study is to quantify the reduction in dose to PTV and OARs from portal imaging (PI) of the craniofacial region ...
متن کاملGlioblastoma Multiforme in a nine-year-old girl: a case report
Brain tumors are the most common solid tumors in childhood. Glioblastoma multiform (GBM) is the second most common primary brain tumor in adults. It usually affects the cerebral hemispheres of adults at the 6th or 7th decade of life. In comparison to adult population, GBM is rare in pediatrics and accounts for approximately 3% of all pediatric brain tumors. Pediatric glioblastoma was defined as...
متن کاملVerification of the Accuracy of the Delivered Dose in Brain Tumors by in Vivo Dosimetry Using Diode Detectors
Introduction: During radiotherapy, high accuracy in the dose delivery is required because there is a strong relationship between the absorbed dose, local tumor control and particularly the normal tissue damage. In many institutions, in vivo dosimetry using diodes is performed to check the actual dose delivered. In general, the uncertainty in the dose delivered should fall within ± 5% of the...
متن کاملIntegrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors
Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...
متن کاملPretreatment quality control of single isocenter half- beam treatment planning technique using an amorphous silicon electronic portal-imaging device (EPID)
Introduction: Electronic portal imaging devices (EPIDs) are fundamentally used for instantaneous verification of the patient set‐up, block shape, and leaf positions during radiation therapy. In radiotherapy, situations arise in which an inclined PTV must be treated mutually with adjacent nodal regions. This methodology is most widely used for matching tangential/lateral breas...
متن کامل